Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds
نویسندگان
چکیده
منابع مشابه
Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties.
Hydroxyapatite (HA) reinforced collagen scaffolds have shown promise for synthetic bone graft substitutes and tissue engineering scaffolds. Freeze-dried HA-collagen scaffolds are readily fabricated and have exhibited osteogenicity in vivo, but are limited by an inherent scaffold architecture that results in a relatively small pore size and weak mechanical properties. In order to overcome these ...
متن کاملThree-dimensional printing fiber reinforced hydrogel composites.
An additive manufacturing process that combines digital modeling and 3D printing was used to prepare fiber reinforced hydrogels in a single-step process. The composite materials were fabricated by selectively pattering a combination of alginate/acrylamide gel precursor solution and an epoxy based UV-curable adhesive (Emax 904 Gel-SC) with an extrusion printer. UV irradiation was used to cure th...
متن کاملHydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.
Hydroxyapatite (HA) whisker-reinforced polyetherketoneketone (PEKK) bone ingrowth scaffolds were prepared and characterized. High levels of porosity (75-90%) and HA whisker reinforcement (0-40 vol.%) were attained using a powder processing approach to mix the HA whiskers, PEKK powder and a NaCl porogen, followed by compression molding at 350-375 degrees Celsius and particle leaching to remove t...
متن کاملHydroxyapatite-reinforced Collagen Tissue Engineering Scaffolds
by Robert J. Kane Scaffolds have been fabricated from a wide variety of materials and most have showed some success, either as bone graft substitutes or as tissue engineering scaffolds. However, all current scaffold compositions and architectures suffer from one or more flaws including poor mechanical properties, lack of biological response, non-degradability, or a scaffold architecture not con...
متن کاملPatterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.
OBJECTIVE Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. APPROACH A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science and Technology of Advanced Materials
سال: 2011
ISSN: 1468-6996,1878-5514
DOI: 10.1088/1468-6996/12/4/045003